thermobarometry

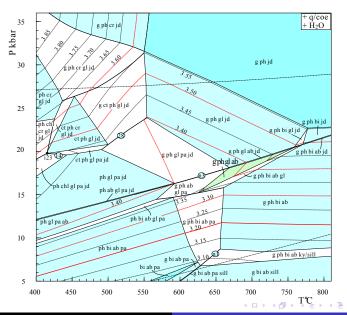
▶ material from a short course in ETH (Zürich)

thermobarometry

- material from a short course in ETH (Zürich)
- some overlap with my brasilia keynote...
- ...but hopefully covered at a slower pace!

- ➤ single reaction ("directly-calibrated")
- multiple reaction (based on an internally-consistent dataset)
- calculated pseudosections

- ▶ single reaction ("directly-calibrated")
 - ▶ e.g., g-bi Fe-Mg exchange thermometry; GASP barometry
- multiple reaction (based on an internally-consistent dataset)
- calculated pseudosections


- single reaction ("directly-calibrated")
 - e.g., g-bi Fe-Mg exchange thermometry; GASP barometry
- multiple reaction (based on an internally-consistent dataset)
 - "optimal thermobarometry": average PT, or \overline{PT}
- calculated pseudosections

- ▶ single reaction ("directly-calibrated")
 - e.g., g-bi Fe-Mg exchange thermometry; GASP barometry
- multiple reaction (based on an internally-consistent dataset)
 - "optimal thermobarometry": average PT, or \overline{PT}
- calculated pseudosections
 - a powerful sort of thermobarometry, via
 - mineral stability fields
 - mineral proportion isopleths
 - mineral composition isopleths

pseudosection approach

we have had a go at the pseudosection sort of thermobarometry, at least indirectly via learning how to calculate them

a garnet-glaucophane schist from the Tienshan

logic

- we have covered pseudosections at some length,
- ▶ so what I want to do is look at single- and multiple-reaction methods, particularly average PT, or \overline{PT}

logic

- we have covered pseudosections at some length,
- So what I want to do is look at single- and multiple-reaction methods, particularly average PT, or PT
 - acknowledging that single reaction methods should really be considered to be a subset of these
- in particular I want to look at
 - sources of uncertainty (in the context of the under-reporting of uncertainties in single-reaction thermobarometry),
 - and making all the methods, including pseudosections, thermodynamically consistent with each other

 conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)

b thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}

- conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)
 - generally semi-empirical

▶ thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}

- conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)
 - generally semi-empirical
 - has become a bit detached from mineral equilibria work
- b thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}

- conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)
 - generally semi-empirical
 - has become a bit detached from mineral equilibria work
 - muddled thinking about assignment of uncertainties
- b thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}

- conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)
 - generally semi-empirical
 - has become a bit detached from mineral equilibria work
 - muddled thinking about assignment of uncertainties
- b thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}
 - merit of consistency with other mineral equilibria methods

- conventional thermobarometry has tended to involve one or two equilibria, "directly-calibrated" from experimental and other data (e.g. g-bi Fe-Mg exchange thermometry combined with GASP)
 - generally semi-empirical
 - has become a bit detached from mineral equilibria work
 - muddled thinking about assignment of uncertainties
- b thermobarometry in an internally-consistent thermodynamic dataset setting (i.e. with those data having been through a thermodynamic "filter") for example \overline{PT}
 - merit of consistency with other mineral equilibria methods
 - possibility of realistic assignment of uncertainties, and so
 - possibility of recognising when there is little or no thermobarometric in a mineral assemblage

let's look at conventional thermobarometry, in general

- let's look at conventional thermobarometry, in general
- address the apparent disconnect between reported uncertainties on PT in this, and those implied by PT

- let's look at conventional thermobarometry, in general
- ▶ address the apparent disconnect between reported uncertainties on PT in this, and those implied by PT
- I'll do this by looking at sources of uncertainty in general,
- then look at the g-cpx Fe-Mg exchange thermometer as an example.

- essential idea in thermobarometry:
 - ▶ the **extrapolation** of experimental data on mineral properties and mineral equilibria in *P*, *T* and composition

- essential idea in thermobarometry:
 - ▶ the **extrapolation** of experimental data on mineral properties and mineral equilibria in *P*, *T* and composition
- ► theme:
 - use equilibrium thermodynamics, as well as statistics, in order to do this. And common sense!

formulation

calibration

application

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration

application

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application
 - only as good as knowledge of rocks

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application
 - only as good as knowledge of rocks
 - good and appropriate mineral chemistry

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application
 - only as good as knowledge of rocks
 - good and appropriate mineral chemistry
 - sensible mineral recalculation

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application
 - only as good as knowledge of rocks
 - good and appropriate mineral chemistry
 - sensible mineral recalculation
- reporting results

- formulation
 - thermodynamic modelling, but no one good model, so
 - technical judgement necessary, as well as heuristics
- calibration
 - good data selection
 - but more parameters than data to constrain them,
 - and data scattered or inconsistent or both
- application
 - only as good as knowledge of rocks
 - good and appropriate mineral chemistry
 - sensible mineral recalculation
- reporting results
 - realistic assessment/assignment of uncertainties

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

bias

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias
 - which thermodynamic model

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias
 - which thermodynamic model
 - which data used in calibration

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias
 - which thermodynamic model
 - which data used in calibration
 - probe setup

bias is (one of) our most serious problems, not least because we cannot always tell when we are dealing with a bias problem...

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias
 - which thermodynamic model
 - which data used in calibration
 - probe setup
 - method of mineral recalculation

bias is (one of) our most serious problems, not least because we cannot always tell when we are dealing with a bias problem...

an aim is to calculate appropriate uncertainties on calculated *PT* values. How do the uncertainties arise? First:

- bias
 - associated with a fundamental choice in approach
 - uncertainties not assignable to calculated PT values
- sources of bias
 - which thermodynamic model
 - which data used in calibration
 - probe setup
 - method of mineral recalculation
 - geological interpretation

bias is (one of) our most serious problems, not least because we cannot always tell when we are dealing with a bias problem...

systematic uncertainties

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
- random uncertainties

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
 - a-x relationships
- random uncertainties

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
 - a-x relationships
- random uncertainties
 - uncertainties that are different for each PT calculation

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
 - ▶ a-x relationships
- random uncertainties
 - uncertainties that are different for each PT calculation
- sources of random uncertainties

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
 - ▶ a-x relationships
- random uncertainties
 - uncertainties that are different for each PT calculation
- sources of random uncertainties
 - mineral analysis uncertainty (counting statistics)

- systematic uncertainties
 - having chosen thermodynamic model, and calibration data,
 - can generate uncertainties on parameters, and
 - can calculate uncertainties on PT that stem from them
 - > same contribution for all PT calcs done in the same way
 - relevant for \overline{PT} , but circumvented for ΔPT
- sources of systematic uncertainty
 - internally-consistent dataset
 - ▶ a-x relationships
- random uncertainties
 - uncertainties that are different for each PT calculation
- sources of random uncertainties
 - mineral analysis uncertainty (counting statistics)
 - geological variability

summarising, for PT calculations

bias

systematic uncertainties

summarising, for PT calculations

- bias
 - unassignable uncertainty contribution
- systematic uncertainties

summarising, for PT calculations

- bias
 - unassignable uncertainty contribution
 - so this is the "black hole" in assessing uncertainties
- systematic uncertainties

- bias
 - unassignable uncertainty contribution
 - ▶ so this is the "black hole" in assessing uncertainties
- systematic uncertainties
 - assignable: included in absolute uncertainties
- random uncertainties

- bias
 - unassignable uncertainty contribution
 - ▶ so this is the "black hole" in assessing uncertainties
- systematic uncertainties
 - assignable: included in absolute uncertainties
 - not included in relative/comparison uncertainties
- random uncertainties

- bias
 - unassignable uncertainty contribution
 - ▶ so this is the "black hole" in assessing uncertainties
- systematic uncertainties
 - assignable: included in absolute uncertainties
 - not included in relative/comparison uncertainties
- random uncertainties
 - assignable: included in absolute uncertainties

- bias
 - unassignable uncertainty contribution
 - so this is the "black hole" in assessing uncertainties
- systematic uncertainties
 - assignable: included in absolute uncertainties
 - not included in relative/comparison uncertainties
- random uncertainties
 - assignable: included in absolute uncertainties
 - assignable: included in relative/comparison uncertainties

- sources of uncertainty arise from all of
 - formulation
 - calibration
 - application

► Fe-Mg exchange between garnet and clinopyroxene

- ► Fe-Mg exchange between garnet and clinopyroxene
- current formulations semi-empirical but thermodynamically-based

- ► Fe-Mg exchange between garnet and clinopyroxene
- current formulations semi-empirical but thermodynamically-based
- calibration primarily from high PT experimental work

- Fe-Mg exchange between garnet and clinopyroxene
- current formulations semi-empirical but thermodynamically-based
- calibration primarily from high PT experimental work
- ▶ uncertainties commonly under-reported (±30°C!)

krogh ravna is the best g-cpx Fe-Mg thermometer out there currently

 but there are problems relating to using his equation for extrapolation—as is involved in nearly all thermometry)

krogh ravna is the best g-cpx Fe-Mg thermometer out there currently

- but there are problems relating to using his equation for extrapolation—as is involved in nearly all thermometry)
- ▶ not utilising all information available (ΔV and ΔS of the Fe-Mg exchange reaction)

krogh ravna is the best g-cpx Fe-Mg thermometer out there currently

- but there are problems relating to using his equation for extrapolation—as is involved in nearly all thermometry)
- ▶ not utilising all information available (ΔV and ΔS of the Fe-Mg exchange reaction)
- composition dependence not in an activity coefficient form

krogh ravna is the best g-cpx Fe-Mg thermometer out there currently

- but there are problems relating to using his equation for extrapolation—as is involved in nearly all thermometry)
- ▶ not utilising all information available (ΔV and ΔS of the Fe-Mg exchange reaction)
- composition dependence not in an activity coefficient form
- assumption of no ferric iron in the experiments used to calibrate the thermometer (maybe grossly unfair!?)

g-cpx example

let's look at an example: Proyer et al. (2004, Contributions to Mineralogy and Petrology, **147**, 305–318) for a Dabie Shan coesite-bearing eclogite (SM93).

This example is also used in an accompanying prac. Why? Because they have done Mössbauer on their minerals so they *know* how much ferric iron they have.

In a lot of conventional thermobarometry ferric iron is a major issue (because it is a critical unknown).

▶ ignoring the Mössbauer analysis, $T=850^{\circ}\,\mathrm{C}$

- ▶ ignoring the Mössbauer analysis, $T = 850^{\circ} \, \mathrm{C}$
- what is the uncertainty on this? i.e. what is $\pm_T = 2\sigma_T$

- ightharpoonup ignoring the Mössbauer analysis, $T=850^{o}\,\mathrm{C}$
- what is the uncertainty on this? i.e. what is $\pm_T = 2\sigma_T$
 - ▶ calibration (σ_T at least 30° C)

- ightharpoonup ignoring the Mössbauer analysis, $T=850^{o}\,\mathrm{C}$
- what is the uncertainty on this? i.e. what is $\pm_T = 2\sigma_T$
 - ightharpoonup calibration (σ_T at least 30° C)
 - **.** . . .

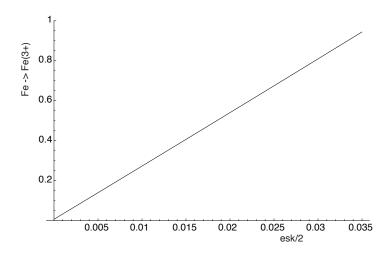
- ignoring the Mössbauer analysis, $T=850^{\circ}\,\mathrm{C}$
- what is the uncertainty on this? i.e. what is $\pm_T = 2\sigma_T$
 - ightharpoonup calibration (σ_T at least 30° C)
 - **.**..
 - mineral analysis uncertainty (1% relative on wt% oxides)

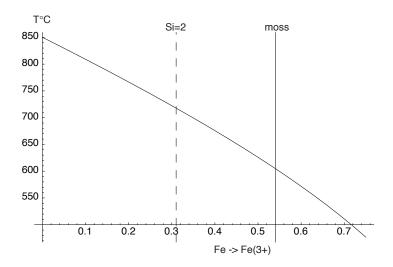
naive temperature

- ightharpoonup ignoring the Mössbauer analysis, $T=850^{\circ}\,\mathrm{C}$
- what is the uncertainty on this? i.e. what is $\pm_T = 2\sigma_T$
 - ightharpoonup calibration (σ_T at least 30° C)
 - **.** . . .
 - mineral analysis uncertainty (1% relative on wt% oxides)
 - what to do about Fe^{3+} ?? charge balance calculation... (gives $Fe^{3+}=0$); or ignore it!! (is the same in this case)

▶ error propogation of mineral analysis uncertainty, assuming ${\rm Fe^{3+}}=0$, gives $T=850\pm12^o\,{\rm C}$ just from the mineral analysis uncertainty:

- rror propagation of mineral analysis uncertainty, assuming ${\rm Fe^{3+}}=0$, gives $T=850\pm12^o\,{\rm C}$ just from the mineral analysis uncertainty:
- so that is OK then?

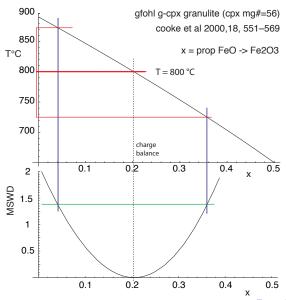

- rror propagation of mineral analysis uncertainty, assuming ${\rm Fe^{3+}}=0$, gives $T=850\pm12^{o}\,{\rm C}$ just from the mineral analysis uncertainty:
- so that is OK then?
- ▶ I don't think so! This *regularises* the result, *but* strongly biases it—on the high *T* side.


- rror propagation of mineral analysis uncertainty, assuming ${\rm Fe^{3+}}=0$, gives $T=850\pm12^{o}\,{\rm C}$ just from the mineral analysis uncertainty:
- so that is OK then?
- ▶ I don't think so! This *regularises* the result, *but* strongly biases it—on the high *T* side.
- should use error propagation of mineral analysis uncertainty, using a charge balance calculation to get Fe³⁺,
- but what charge balance calculation? What if there is significant Ca-eskola molecule in the cpx? (And what is significant?)

- rror propagation of mineral analysis uncertainty, assuming ${\rm Fe^{3+}}=0$, gives $T=850\pm12^{o}\,{\rm C}$ just from the mineral analysis uncertainty:
- so that is OK then?
- ▶ I don't think so! This *regularises* the result, *but* strongly biases it—on the high *T* side.
- should use error propagation of mineral analysis uncertainty, using a charge balance calculation to get Fe³⁺,
- but what charge balance calculation? What if there is significant Ca-eskola molecule in the cpx? (And what is significant?)
- ▶ alternatively, do a forward calculation, *specifying* Fe³⁺ (and Ca-eskola molecule) and calculating the "best" analysis (by least squares) corresponding to the specification.

effect of eskolaite

summarising


lacktriangle uncertainties arising from unknown ${
m Fe}^{3+}$ are huge

summarising

- lacktriangle uncertainties arising from unknown ${
 m Fe}^{3+}$ are huge
- ▶ Proyer *et al.* (2004), *determined* Fe³⁺, so in that case uncertainties are reduced (do the prac to see the details)

summarising

- lacktriangle uncertainties arising from unknown ${
 m Fe}^{3+}$ are huge
- ▶ Proyer *et al.* (2004), *determined* Fe³⁺, so in that case uncertainties are reduced (do the prac to see the details)
- regularising calculations by using $Fe^{3+} = 0$ is indefensible (because of the strong upwards bias on T)

so let's estimate a T uncertainty for this cooke et al example

▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ}$ C

- ▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ}$ C
- error propagation approach gives $\sigma_T = 25^\circ$

- ▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ} C$
- error propagation approach gives $\sigma_T = 25^\circ$
- ▶ in the absence of geological variability in mineral compositions the relative uncertainty on T is $\pm 50^{\circ}$ (2 σ for 95% confidence)

- ▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ} C$
- error propagation approach gives $\sigma_T = 25^\circ$
- ▶ in the absence of geological variability in mineral compositions the relative uncertainty on T is $\pm 50^{\circ}$ (2 σ for 95% confidence)
- ▶ this $\pm 50^{\circ}$ comes solely from the ${\rm FeO} \rightarrow {\rm Fe_2O_3}$ conversion
- it is a minimum.

dependence of T on $\text{FeO} \rightarrow \text{Fe}_2\text{O}_3$ conversion (3)

- ▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ} C$
- error propagation approach gives $\sigma_T = 25^\circ$
- ▶ in the absence of geological variability in mineral compositions the relative uncertainty on T is $\pm 50^{\circ}$ (2 σ for 95% confidence)
- ▶ this $\pm 50^{\circ}$ comes solely from the ${\rm FeO} \rightarrow {\rm Fe_2O_3}$ conversion
- it is a minimum.
- ▶ now let's say the calibration contribution to T uncertainty is $\sigma_T = 30^\circ$, with assumptions about the formulation and data
- so this is a minimum.

dependence of T on $\text{FeO} \rightarrow \text{Fe}_2\text{O}_3$ conversion (3)

- ▶ for MSWD < 1.5, the T range around 800°C is $720^{\circ} < T < 880^{\circ} C$
- error propagation approach gives $\sigma_T = 25^\circ$
- ▶ in the absence of geological variability in mineral compositions the relative uncertainty on T is $\pm 50^{\circ}$ (2 σ for 95% confidence)
- ▶ this $\pm 50^{\circ}$ comes solely from the ${\rm FeO} \rightarrow {\rm Fe_2O_3}$ conversion
- it is a minimum.
- ▶ now let's say the calibration contribution to T uncertainty is $\sigma_T = 30^\circ$, with assumptions about the formulation and data
- so this is a minimum.
- ▶ the uncertainty on a temperature is therefore $2\sqrt{25^2 + 30^2}$, giving $T = 800 \pm 80^{\circ}\mathrm{C}$
- and this is certainly a minimum...

now to move on

- generalising, uncertainties in conventional thermobarometry are commonly under-reported
- let's now look at \overline{PT}

▶ in PT, the thermodynamics of an independent set of reactions between the end-members of the mineral assemblage (assumed to have been in equilibrium) is combined statistically (by "least squares") to give a PT result.

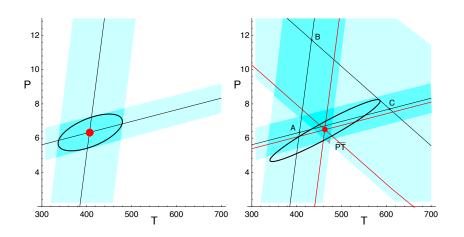
- ▶ in PT, the thermodynamics of an independent set of reactions between the end-members of the mineral assemblage (assumed to have been in equilibrium) is combined statistically (by "least squares") to give a PT result.
 - number of independent reactions =
 no of end-members of phases no of system components

- ▶ in PT, the thermodynamics of an independent set of reactions between the end-members of the mineral assemblage (assumed to have been in equilibrium) is combined statistically (by "least squares") to give a PT result.
 - number of independent reactions =
 no of end-members of phases no of system components
 - statistical basis means that consistency of data being combined can be assessed (via regression diagnostics),
 - which is not true for conventional thermobarometry

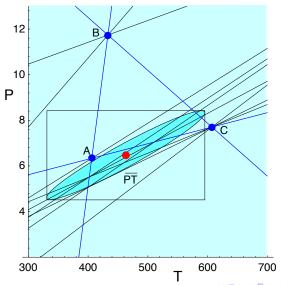
- ▶ in PT, the thermodynamics of an independent set of reactions between the end-members of the mineral assemblage (assumed to have been in equilibrium) is combined statistically (by "least squares") to give a PT result.
 - number of independent reactions =
 no of end-members of phases no of system components
 - statistical basis means that consistency of data being combined can be assessed (via regression diagnostics),
 - which is not true for conventional thermobarometry
 - possibility of realistic assignment of uncertainties (via the goodness of fit parameter involved)

write an independent set of reactions between the end-members of the phases of interest

- write an independent set of reactions between the end-members of the phases of interest
- write $0 = \Delta G^o + RT \ln K$ for each reaction, with K being a product of the activities of the end-members,


- write an independent set of reactions between the end-members of the phases of interest
- write $0 = \Delta G^o + RT \ln K$ for each reaction, with K being a product of the activities of the end-members,
- determine ΔG^o from an internally-consistent thermodynamic dataset (often nearly linear function of P and T)
- determine activities from thermodynamic models and the analysed compositions of the phases

- write an independent set of reactions between the end-members of the phases of interest
- write $0 = \Delta G^o + RT \ln K$ for each reaction, with K being a product of the activities of the end-members,
- ▶ determine ΔG^o from an internally-consistent thermodynamic dataset (often nearly linear function of P and T)
- determine activities from thermodynamic models and the analysed compositions of the phases
- consider the activities of each of the end-members of the phases to be variable within their uncertainties
- ▶ each reaction then defines a PT band, the bands being correlated with each other via the activities


- write an independent set of reactions between the end-members of the phases of interest
- write $0 = \Delta G^o + RT \ln K$ for each reaction, with K being a product of the activities of the end-members,
- determine ΔG^o from an internally-consistent thermodynamic dataset (often nearly linear function of P and T)
- determine activities from thermodynamic models and the analysed compositions of the phases
- consider the activities of each of the end-members of the phases to be variable within their uncertainties
- each reaction then defines a PT band, the bands being correlated with each other via the activities
- ▶ then \overline{PT} is the PT point that is as "close" as possible (in a least squares sense) to every reaction line

\overline{PT} thermobarometry (1)

\overline{PT} thermobarometry (2)

▶ what separates the \overline{PT} approach is its ability to assess whether data (i.e. activities of end-members) being combined should actually be combined

- what separates the \overline{PT} approach is its ability to assess whether data (i.e. activities of end-members) being combined should actually be combined
- lacktriangle the key statistic, relating to "goodness-of-fit", is $\sigma_{
 m fit}$
- For those of you who have done battle with isochrons etc., $\sigma_{\rm fit} = \sqrt{\rm mswd}$

- what separates the \overline{PT} approach is its ability to assess whether data (i.e. activities of end-members) being combined should actually be combined
- lacktriangle the key statistic, relating to "goodness-of-fit", is $\sigma_{
 m fit}$
- For those of you who have done battle with isochrons etc., $\sigma_{\rm fit} = \sqrt{\rm mswd}$
- $\sigma_{
 m fit}$ is just a measure of how much the activities of the end-members have to be varied to make the reaction lines go through a single PT (the \overline{PT})

- what separates the PT approach is its ability to assess whether data (i.e. activities of end-members) being combined should actually be combined
- lacktriangle the key statistic, relating to "goodness-of-fit", is $\sigma_{
 m fit}$
- For those of you who have done battle with isochrons etc., $\sigma_{\rm fit} = \sqrt{\rm mswd}$
- $\sigma_{
 m fit}$ is just a measure of how much the activities of the end-members have to be varied to make the reaction lines go through a single PT (the \overline{PT})
- $ightharpoonup \sigma_{\rm fit}$ is judged by a χ^2 test, a value that $\sigma_{\rm fit}$ should be less than for 95% confidence...

- what separates the PT approach is its ability to assess whether data (i.e. activities of end-members) being combined should actually be combined
- lacktriangle the key statistic, relating to "goodness-of-fit", is $\sigma_{
 m fit}$
- for those of you who have done battle with isochrons etc., $\sigma_{\rm fit} = \sqrt{\rm mswd}$
- $\sigma_{
 m fit}$ is just a measure of how much the activities of the end-members have to be varied to make the reaction lines go through a single PT (the \overline{PT})
- $ightharpoonup \sigma_{\rm fit}$ is judged by a χ^2 test, a value that $\sigma_{\rm fit}$ should be less than for 95% confidence...
- $ightharpoonup \sigma_{\mathrm{fit}}$ depends on the size of the activity uncertainties: halving all the uncertainties, doubles the σ_{fit} .

▶ what are the variables? Usually PT, but also sometimes, e.g. $x_{\rm CO_2}$ or $a_{\rm H_2O}$

- ▶ what are the variables? Usually PT, but also sometimes, e.g. $x_{\rm CO_2}$ or $a_{\rm H_2O}$
- what is least well-known? (Often not helpful to go straight for \overline{PT} ..., e.g. if T poorly constrained by mineral assemblage)

- what are the variables? Usually PT, but also sometimes, e.g. $x_{\rm CO_2}$ or $a_{\rm H_2O}$
- what is least well-known? (Often not helpful to go straight for \(\overline{PT}\)..., e.g. if \(T\) poorly constrained by mineral assemblage)
- ightharpoonup run \overline{P} first, for a sensible T range

- ▶ what are the variables? Usually PT, but also sometimes, e.g. $x_{\rm CO_2}$ or $a_{\rm H_2O}$
- what is least well-known? (Often not helpful to go straight for \(\overline{PT}\)..., e.g. if \(T\) poorly constrained by mineral assemblage)
- run \overline{P} first, for a sensible T range
- is $\sigma_{\rm fit}$ good? If not, investigate why.

- what are the variables? Usually PT, but also sometimes, e.g. $x_{\rm CO_2}$ or $a_{\rm H_2O}$
- what is least well-known? (Often not helpful to go straight for \(\overline{PT}\)..., e.g. if \(T\) poorly constrained by mineral assemblage)
- ightharpoonup run \overline{P} first, for a sensible T range
- is $\sigma_{\rm fit}$ good? If not, investigate why.
- ightharpoonup is $\sigma_{\rm fit}$ minimised in T range? If so, try \overline{PT}

► old way

new way

- ► old way
 - run mineral analyses through AX
 - ► assemble THERMOCALC datafile
 - run...
- new way

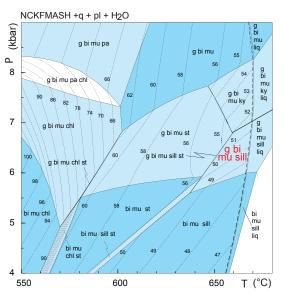
- ▶ old way
 - run mineral analyses through AX
 - ► assemble THERMOCALC datafile
 - ► run...
- new way
 - take mode 1 datafile a-x coding
 - ightharpoonup convert recalculated analyses into $\{x, y, z \dots\}$
 - run!

using mode 1 coding

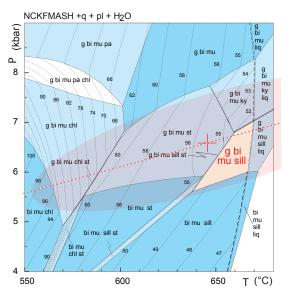
- ▶ show example of the new way:
- Proyer's Dabie Shan rock

another \overline{PT} example

▶ let's look at an example with g-bi Fe-Mg exchange as well as GASP, so featuring two major thermobarometers used out there. We shall see that there are also other reactions to consider, not just these two.


another \overline{PT} example

- ▶ let's look at an example with g-bi Fe-Mg exchange as well as GASP, so featuring two major thermobarometers used out there. We shall see that there are also other reactions to consider, not just these two.
- ▶ garnet-biotite-sillimanite-plagioclase-muscovite-quartz assemblage from the Eastern Alps of Habler & Thöni 2001, Journal of Metamorphic Geology 19, 679–697.


another \overline{PT} example

- ▶ let's look at an example with g-bi Fe-Mg exchange as well as GASP, so featuring two major thermobarometers used out there. We shall see that there are also other reactions to consider, not just these two.
- garnet-biotite-sillimanite-plagioclase-muscovite-quartz assemblage from the Eastern Alps of Habler & Thöni 2001, Journal of Metamorphic Geology 19, 679–697.
- we can see the shape of the phase relations using a PT pseudosection

the setting for a \overline{PT} example

\overline{PT} result

the main message

the main message

whereas Fe-Mg thermometry often provides little thermometric information, other equilibria (e.g. GASP) do give barometric, and sometimes also thermometric information,

the main message

- whereas Fe-Mg thermometry often provides little thermometric information, other equilibria (e.g. GASP) do give barometric, and sometimes also thermometric information,
 - ▶ therefore \overline{PT} (and particularly \overline{P}) can certainly give thermobarometric information, at least on relatively low variance mineral assemblages,
 - and so locating these relatively low variance mineral assemblages, amongst the many mineral assemblages that you might have from an area, is important thermobarometrically

the main message

- whereas Fe-Mg thermometry often provides little thermometric information, other equilibria (e.g. GASP) do give barometric, and sometimes also thermometric information.
 - ▶ therefore \overline{PT} (and particularly \overline{P}) can certainly give thermobarometric information, at least on relatively low variance mineral assemblages,
 - and so locating these relatively low variance mineral assemblages, amongst the many mineral assemblages that you might have from an area, is important thermobarometrically
- but pseudosections are likely to provide the most powerful tools for thermobarometry (as I will argue at the Brasilia meeting coming up)